BS (Hons) Chemistry/BS Botany/BS Zoology, Session:2018 Course Code: CHEM1113 Subject: Fundamentals of Organic Chemistry			Roll No. (in fig.)		
			Roll No. (in words)		
Time Allowed: 15 Mi	SECTION: I (MCQ's)		Candidate's Signature.		
NOTE: Encircle the corre	ect/ best answer in each of the fol	IX. Marks: 12 Howings. Each C. Cutting and	Signature of Addl. Supdt.		
Q1.					
Alkanes v	vater.		(d) none of the above		
(a) float on	(b) sink in	(c) readily mix with	(d) none of the ac-		
	ound C ₄ H ₆ has degree(s) o	of unsaturation. (c) three	(d) four		
(a) one			ives		
• The reaction (a) an alkyne	on of chlorine with an alke (b) a dichloride	(c) a chloroh	ydrins (d) a trans alkene		
 An example 	e of a polar aprotic solvent	t is .	(I) OH C(O)CH		
(a) H ₂ O	(b) NH ₃	(c) H_2S	(d) CH ₃ C(O)CH ₃ .		
• Each ring at	om in an aromatic compot atoms (b) a p orbital	ınd contains (c) an sp ³ orbital	(d) at least three p orbitals		
 An electrophi 	lic nitration substitution r				
(a) NO^+	(b) NO ⁺²	(c) NO ⁺³	(d) NO_2		
Benzene can be	e reduced by reaction wit	h ——— in the prese	ence of a catalyst.		
(a) hydrogen	(b) oxygen	(c) nitrogen	(d) helium		
• The oxidation of	f 1-propanol with chromi	c acid yields			
(a) an alcohol	(b) an aldehyde	(c) a ketone	(d) an acid		
• The strongest acid	l is		• •		
(a) 2-chloroacetic acid (b) 2,2-dichloro			acetic acid		
(c) 3-chloroacetic acid (d) 2,3-dichloro			cetic acid		
 Acetic acid reacts w 	vith propionic acid to gi				
1		cetic propionic	(d) all of the above		
 Ethyl acetate is hydro 	olyzed by water to give		(-) - or the above		
/ \ .	er (c) an anhydride				
	ethyl acetate with diet		c acid and an alcohol		
	(1-): 1				
	(b) imide	(c) anhydride	(d) amino acid		

ASITY OF EDUCATION

JNIVERSITY OF ED "UExam" Semester-II BS (Hons) Chemistry/BS Bott	. 2019	ession:2018-2022	No.	-442
Course Code: CHEM1113 Subject: Fundamentals of Organ			Roll No	o. (in fig.)
SECTIO:	N: 1 (MCQ's)			andidate's Signature.
Time Allowed: 15 Minutes	Max.	Marks: 12	\	
NOTE: Encircle the correct/ best answ Question carries 1 mark. Use of remo Overwriting is not allowed.	er in each of the follow er carries zero mark. C	rings. Each futting and		Signature of Addl. Supdt.
Q1.				
Alkanes water.				(d) none of the above
	sink in	(c) readily mix with		(d) none of the
 The compound C₄F 	I ₆ has degree(s) of	f unsaturation.		(4) 60
(a) one	(b) two	(c) three		(d) four
The reaction of chl	orine with an alke	ne in an inert solvent	gives	(I)
(a) an alkyne (b) a dichloride	(c) a chloro	hydrins	(d) a trans alkene
• An example of a po	olar aprotic solven	it is		
(a) H ₂ O	(b) NH ₃	$(c)H_2S$	(d) CH ₃ C(O)CH ₃ .
 Each ring atom in a 	n aromatic compo	ound contains		
(a) two hydrogen atoms	(b) a p orbita	al (c) an sp ³ orbital	(d) a	t least three p orbitals
An electrophilic nit				
	(b) NO ⁺²	(c) NO ⁺³		(d) NO_2
(a) NO ⁺	(b) 110	with ——— in the p	resence	of a catalyst.
Benzene can be red	uced by reaction	(c) nitroger	n	(d) helium
(a) hydrogen	(b) oxygen			•
• The oxidation of 1-			40.00	(d) an acid
(a) an alcohol	(b) an aldehyde	(c) a ke	tone	(u) III u
• The strongest acid	is			
(a) 2-chlo		(b) 2,2-dichloroacetic acid		
	roacetic acid	(d) 2,3-dich	iloroacet	ic acid
• Acetic acid reacts	with propionic aci	id to give anhydride(s)).	
) propionic	(c) acetic propionic		(d) all of the above
• Ethyl acetate is hy		to give		
		hydride (d) a carl	boxylic a	cid and an alcohol
(a) a lactone (b) an		with diethylamine give	es an	
	(b) imide	(c) anhydride	,	(d) amino acid
(a) amide	(U) Illiac			

d acid

by re

amn

onv

te

UNIVERSITY OF EDUCATION "UExam" Semester-I, 2019

BS (Hons) Chemistry/BS Botany/BS Zoology, Session:2018-2022

Course Code: CHEM1113

Subject: Fundamentals of Organic Chemistry

Time Allowed: 75 Minutes

Max. Marks:

Section II (Short Answer)

Q.2- Write short answers of the following.

3x5 = 15

- Explain why it is necessary to assume sp³ hybridization in CH₄? ì.
- Explain why a chloro group is deactivating but o,p-directing? ii.
- Discuss the mechanism of Friedel-Crafts reaction. What are its limitations? iii.
- Why a nitro group is both deactivating and meta directing?
- How can you distinguish between butanal and 2-butanone by a single test?

Section III (Essay Type)

Answer the following Questions

6x3 = 18

- Q.3:- How do inductive and resonance effects compete with each other when we discuss the orientation and reactivity of -OCH3 group present on benzene?
- Q.4:- Explain the phenomenon of hyperconjugation and give its applications.
- Q.5:- How do you compare S_N1 and S_N2 reactions? Give examples. The factors of steric hindrance and stability of carbocation decides these two types of mechanisms. Justify it.

UNIVERSITY OF EDUCATION

"UExam" Semester-I, 2019

BS (Hons) Chemistry/BS Botany/BS Zoology, Session:2018-2022

se Code: CHEM1113

ct: Fundamentals of Organic Chemistry

: Allowed: 75 Minutes

Max. Marks:

33

Section II (Short Answer)

· Write short answers of the following.

3x5 = 15

- i. Explain why it is necessary to assume sp³ hybridization in CH₄?
- ii. Explain why a chloro group is deactivating but o,p-directing?
- iii. Discuss the mechanism of Friedel-Crafts reaction. What are its limitations?
- iv Why a nitro group is both deactivating and meta directing?
- v. How can you distinguish between butanal and 2-butanone by a single test?

Section III (Essay Type)

Answer the following Questions

6x3 = 18

- Q.3:- How do inductive and resonance effects compete with each other when we discuss the orientation and reactivity of -OCH₃ group present on benzene?
- Q.4:- Explain the phenomenon of hyperconjugation and give its applications.
- Q.5:- How do you compare S_N1 and S_N2 reactions? Give examples. The factors of steric hindrance and stability of carbocation decides these two types of mechanisms. Justify it.

UNIVERSITY OF EDUCATION

"UExam" Semester-I, 2019

BS (Hons) Chemistry/BS Botany/BS Zoology, Session:2018-2022

urse Code: CHEM1113

bject: Fundamentals of Organic Chemistry

me Allowed: 75 Minutes

Max. Marks:

33

Section II (Short Answer)

),2- Write short answers of the following.

3x5 = 15

- i. Explain why it is necessary to assume sp³ hybridization in CH₄?
- ii. Explain why a chloro group is deactivating but o,p-directing?
- iii. Discuss the mechanism of Friedel-Crafts reaction. What are its limitations?
- iv Why a nitro group is both deactivating and meta directing?
- v. How can you distinguish between butanal and 2-butanone by a single test?

Section III (Essay Type)

Answer the following Questions

6x3 = 18

- Q.3:- How do inductive and resonance effects compete with each other when we discuss the orientation and reactivity of -OCH₃ group present on benzene?
- Q.4:- Explain the phenomenon of hyperconjugation and give its applications.
- Q.5:- How do you compare S_N1 and S_N2 reactions? Give examples. The factors of steric hindrance and stability of carbocation decides these two types of mechanisms. Justify it.