UNIVERSITY OF EDUCATION "UExam" Semester-II, 2019 M.Sc Mathematics Session: 2018-20

Course Code: MATH3118 Subject: Number Theory

SECTION: I (MCQ's)

Time Allowed: 20 Minutes Max. Marks: 18 NOTE; Encircle the correct/ best answer in each of the followings. Each Question carries 1 mark. Use of remover carries zero mark. Cutting and Overwriting is not allowed.

No. _____108

Roll No. (in fig.) _____

Roll No. (in words) _____

Candidate's Signature.

Signature of Addl. Supdt.

Q1.

. •	The gcd of two numbers	272 and 1479 is		d) 9
a) •	17	o) 13	c) 19	
	The linear diaphontine equation 172x+20y =1000 has a solution if and only if 2 1000			
a) •	b) 4 1000 c) 8 1000			
	The prime factorization			d) 2 ² .3.13 ² .5
a)	2 ² .3 ² .13 ² .5	b) $2^2.3 \cdot .13^2.5^2$	c) $2^2.3^2.13.5$	u) 2 13134
•	1949 and 1951 are	*		d) Both (a) and (b)
a)	Twin primes	b) Mersenn primes	c) Fermat prime	4) 50
•	When 2 ^{so} . is divided by	7, it gives remainder		J\ 1
a)	5	b) 4	c) 2	d) 1
•	1/ 3			
a)	7	b) 11	c) 13	d) 3
	The no of the form $2^n - 1$, $n \ge 1$ is			
a)	Pseudo prime	b) Fermat prime	c) Mersenn prime	d) None of these
•	19/51 has continued	•		
a)				
•	An odd prime p is expr			
a)	$p \equiv 3 \pmod{4}$			d) All of these
•	The number 65537 is		•	
a)		b) Mersenn Prime	c) Pseudo prime	d) None
•				
a)		b) 2	c) 3	d) 5
•	The number 13 has ex	· · · · · · · · · · · · · · · · · · ·	•	
a١	$\varphi(12)$	b) $\varphi(11)$	c) $\varphi(10)$	d) No
٥,	ψ (12)	-17 ()	-1 7 ()	
•	$\left\lceil \frac{\pi - \lfloor e \rfloor + 3}{\lfloor e \rfloor} \right\rceil = \dots$			
		b) 2	c) -2	13. 0
a)	3 [72, 44] =	5) 2	C) -2	d) -3
•	•	b) 798	-\ 700	
a)	788	0) 730	c) 792	d) 784
•	The number 1009 is	b) Fermat prime		
a)	An odd prime	b) remial prime	c) Mersenn prime	d) None of these
•	π (15) =			
	a) 6	b) 5	c) 4	d) 3
	$Z_p = \{0,1,2,p-1\}$ forms a			u) 3
h) Field				
a	(G, +)	b) Field c) Ri	ng d) (G, .)
•	$\tau(\phi(31)) = \dots$	L) 15		
а) 7	b) 15	c) 8	
				d) 4

UNIVERSITY OF EDUCATION "UExam" Semester-II, 2019 Msc. Mathematics Session:2018-20

Course Code: MATH3118 Subject: Number Theory

Time Allowed: 100 Minutes.

Max. Marks: 42

Section II (Short Answer)

Q.2- Write short answers of the following.

3x6 = 18

- i. Verify that 1951 and 1949 are twin primes.
- ii. Enlist all the primitive roots of 19.
- iii. Find the last two digits of 7¹⁰⁰ in its decimal expansion.
- iv. Show that the congruence relation is an equivalence relation.
- v. Show that 1387 is a Pseudo Prime.
- vi. Obtain all the Quadratic residues mod 17.

Section III (Essay Type)

Answer the following Questions

6x4 = 24

- Q:3:- State and prove "LIFTING LEMMA"
- **Q.4:-** The linear congruence $ax \equiv b \pmod{m}$ has a solution if and only if $d \mid b$. where $d = \gcd(a, b)$. If $d \mid b$, then it has d mutually incongruent solutions modulo m.
- **Q.5:-** Find all possible solution(s) of $x^2 + x + 3 \equiv 0 \pmod{3^3}$
- **Q.6:-** If p is a prime then the congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n solutions.