UNIVERSITY OF EDUCATION "UExam" Semester-IV, 2019 M.Sc. Mathematics Session: 2017-19 Course Code: MATH4117 Subject: Differential Geometry SECTION: I (MCQ's) Max. Marks: 18 Time Allowed: 20 Minutes NOTE: Encircle the correct/ best answer in each of the followings. Each Question carries 1 mark. Use of remover carries zero mark. Cutting and Overwriting is not allowed. Q1. The homomorphic image $\phi(G)$ of a group G is itself a -----. b) subgroup c) group a) Homomorphism Every group is isomorphic to a subgroup of a --c) symmetric gro b) homomorphic a) Cyclic Every group of prime order is cyclic and hence ------

b) 2

A group whose only element is finite order is the identity is called

a) (Z,0)

these

a) Torsion group

Torsion free abelian group has no

Torsion free abelian groups of $(a_1)k$

The example of free torsion group is

a) Trivial torsion element

b) Non trivial torsion element

b) Torsion free group

c) 3

c) Z

RSITY OF EDU n" Semester-IV, athematics Sessio de: MATH4117 ifferential Geometry	2019			19 (in fig.)
SECTION	\	Koli N	(0, (III words)	
wed: 20 Minutes	Max. Mar	ks: 18	Can	didate's Signature.
ircle the correct/ best answerries 1 mark. Use of removed is not allowed.	er in each of the followings or carries zero mark, Cuttin	, Each g and		Signature of Addl. Supdt.
•				
The homomorphic image a) Homomorphism	b) subgroup	c) group	d) cyclic	
Every group is isomorph a) Cyclic	b) homomorphic	c) symmetric group	d) none	
	cyclic	c) group	(d) symmetric
a) 2	ime order has only s b)4	c)3	d)1	
 a) Simple groups 	er normal subgroups also b) Normal subgroups	c) proper subgroup	d) none	
The center of a finite p-sa) Non-trivial	b) normal	c) trivial	d) none	
A commutative division a) Subring	b) ring	c) field	d) none	
Every field is alsoa) ring	b) field	c) division ring	d) subrir	ng
a) Subring	b) division ring	c) field		d) cyclic
A commutative ring is a a) Field	b) integral domain	c) group		d) subring
In a torsion group in wha) Finite	b) Infinite	c) Cyclic		d) Non-cyclic
The exponent of periodic group G is a) GCD b) LCM		c) HCF	d) All of these	
The another name of torsion group is a) Non-periodic b) Periodic group these		c) Torsion group		d) None of
Every finitely generated a) Torsion Free	abelian group G is ison b) torsion	norphic to T⊕F, where c) Both a and b	T and F are	e d) None of
these				

c) Identity element d) None

d) 4

d) None of these

c) Cyclic group d) None of

UNIVERSITY OF EDUCATION "UExam" Semester-IV, 2019 Msc. Mathematics Session:2017-19

Course Code: MATH4117 Subject: Differential Geometry Time Allowed: 100 Minutes.

Max. Marks:

ature.

Addl. Supdt.

Section II (Short Answer)

Q.2- Write short answers of the following.

3x6 = 18

- Prove that order of an element divides the order of a finite group G.
- Define homomorphism and isomorphism with example. ii.
- Prove that every cyclic group is abelian. iii.
- Find all the subgroups of a cyclic group of order 12. iv.
- Define even permutation and odd permutation. ٧.
- Every group of order $p^{\,2}$, where p is a prime number, is abelian. vi.

Section III (Essay Type)

Answer the following Questions

6x4 = 24

- Q3. State and prove Cayley's theorem.
- Q4. The intersection of any collection of normal subgroups is again a normal subgroup.
- Q5. The collection of all left cosets of H in G defines a partition of G.
- Q6. Let G be a finite group and H be a subgroup of G then both order and index of H in g divides the order of G.