UNIVERSITY OF EDUCATION

"UExam" Semester-IV, 2019

BS Physics Session: 2017-21 Course Code: MATH2117

Subject: Ordinary Differential Equations

SECTION: I (MCQ's)

Time Allowed: 20 Minutes

Max. Marks: 18

NOTE: Encircle the correct/best answer in each of the followings. Each Question carries 1 mark. Use of remover carries zero mark. Cutting and Overwriting is not allowed.

Q1.

Order of differential equation	$\frac{d^3y}{dx^3} + \frac{dy}{dx} = e^x \text{ is}$	
74-1	2	(c) 3

(d) 4

61

Roll No. (in fig.)

Roll No. (in words)_

Candidate's Signature.

Signature of Addl. Supdt.

(a) 1 • The equation $(1-y)\frac{dy}{dx} + 2y = 0$ is _____ equation.

(a) linear (b) non-linear (c) linear second order (d)non-linear second order

• $x^2 + y^2 = 25$ is an _____ solution of a differential equation.

(a) Explicit

(b) Implicit

(c) both (a) and (b)

(d) none of the above

_ problem. $\frac{d^2y}{dx^2} - y = 0$, y(0) = 1, y'(1) = 2 is a _____

(b) Boundary value (c) non-initial value (d) both (a) and (b)

___ function of degree 3. $f(x,y) = x^3 + y^3$ is a_____

(a) Homogeneous (b) Non-homogeneous (c) both (a) and (b) (d) none of these

The set of solutions is linearly independent on an interval I iff wronskian of that set is

(a) = 0

(b) $\neq 0$

(c) > 0

Annihilator operator of e^{-3x} is (c) $(D+3)^2$ (d) (D+3)

(b) $(D-3)^2$ Solution in case of repeated roots of Cauchy-Euler equation is of the form

(a) $y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$

(b) $y = c_1 e^{m_1 x} + c_2 x e^{m_2 x}$ (d) $y = c_1 x^{m_1} + c_2 \ln x x^{m_2}$

(c) $y = c_1 x^{m_1} + c_2 x^{m_2}$ _ points of $(x^2 - 4)^2 y'' + 3(x - 2)y' + 5y = 0$. (d) None of these .

x = 2, x = -2 are ____ (c) non-singular (b) singular (a) ordinary

Laplace transform of e^{-3t} is

 $\Gamma(1+\nu+1)=-$

(d) $\frac{1}{s+2}$

Radius of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$ is ____ (d) -2

(b) $(1-v)\Gamma(v)$

(d) $(1-v)\Gamma(v-1)$ (a) $(1+v)\Gamma(v)$ (c) $(1+v)\Gamma(v+1)$ (b) $(1)^n P_n(x)$ (c) $(-1)^n P_n(x)$ (d) $(-1)^n P_o(x)$ $P_n(-x) =$

(a) $(-1)P_n(x)$ Inverse Laplace transform of $\frac{1}{s}$ is _____

-2

• $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$ and $X_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} e^{6t}$ are linearly____

(b) independent (c) both (a) and (b) (d) None of these. If y_1, y_2 and y_3 are the solutions of a differential equation then which of the following

(b) $c_1y_1 + c_2y_2 - y_3$ (c) $y_1 - y_2 + y_3$ (d) all of the above. is also a solution.

The functions $y_1 = e^x$, $y_2 = e^{2x}$ and $y_3 = e^{3x}$ _____ a fundamental set of (d) may not form. solution.

(c) may form

If e^{7x} is a solution of differential equation, then which of the following is also the solution of that equation

UNIVERSITY OF EDUCATION "UExam" Semester-IV, 2019

BS Physics Session:2017-21

Course Code: MATH2117 Subject: Ordinary Differential Equations

Time Allowed: 100 Minutes.

Max. Marks: 42

Section II (Short Answer)

Q.2- Write short answers of the following.

3x6 = 18

- (i) Solve $\frac{dy}{dx} 3y = 0$.
- (ii) Check whether the differential equation is exact or not

$$(e^{2y} - y\cos xy)dx + (2xe^{2y} - x\cos xy + 2y)dy = 0.$$

- (iii) Find inverse Laplace transform of $\frac{1}{(s^2+k^2)^2}$.
- (iv)Describe the modeling of differential equation with the help of an example.
- (v) Solve $y' + 2y = f(x), y(1) = 0 f(x) = \begin{cases} 0, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$
- (vi) Find a power series representation of $e^x sinx$.

Section III (Essay Type)

Answer the following Questions

6x4 = 24

Q.3:- Solve the System

$$L\frac{di_1}{dt} + Ri_2 = E(t)$$

$$RC\frac{di_2}{dt} + i_2 - i_1 = 0$$

by Laplace transformation under the conditions $E(t)=60V,\ L=1h,\ R=50\Omega,$

 $C = 10^{-4} f_1$ and the currents i_1 and i_2 are initially zero.

Q.4:- Find 2 power series solution of $(x^2 + 1)y'' + xy' - y = 0$ about the ordinary point x = 0.

Q.5:- Solve the $y'' - 6y' + 8y = 3e^{-2x} + 2x$ by undetermined coefficients.

Q.6:- Find the solution of differential equation

$$\frac{d^5y}{dr^5} + 5 \frac{d^4y}{dr^4} - 2 \frac{d^3y}{dr^3} - 10 \frac{d^2y}{dr^2} + \frac{dy}{dr} + 5 y = 0.$$

b)
$$-\frac{3}{35}$$

$$c) -\frac{2}{3}$$