UNVERSITY OF EDUCATION "UExam" Semester-II, 2019

BS Physics, Session:2018-2022

Course Code: PHYS1115 Subject: Waves and Oscillations

SECTION: 1 (MCQ's)

Time Allowed: 20 Minutes Max. Marks: 18 NOTE: Encircle the correct/ best answer in each of the followings. Each Question carries 1 mark. Use of remover carries zero mark. Cutting and Overwriting is not allowed.

174 Roll No. (in fig.) Roll No. (in words) Candidate's Signature. Signature of Addl. Supdt.

Q1.

- Motion of Simple Pendulum is
 - (b) Angular motion Circular motion
 - (d) Rotatory motion (c) SHM
- · The velocity of Harmonic Oscillator is Maximum at mean Position when
- (b) x = 0 (c) $x = \frac{1}{2}kx$
- (d) $x = kx_0$
- The maximum displacement of Simple Harmonic Oscillator from position is.
 - Displacement
- (b) Velocity (c) Amplitude
- (d) Acceleration
- The reciprocal to time period is equal to
 - Frequency (b) Vibration
- (c) Displacement (d) Amplitude
- The total mechanical energy of Simple Harmonic Oscillator is
- Conserved (b) Greater (c) Minimum
- (d) Destroyed
- In case of Simple pendulum, for small amplitude $\sin \theta$
 - (a) $\sin \theta = maximum$
- (b) $\sin \theta = \min \max$
- (c) $\sin \theta = 0$

- (d) $\sin \theta > 0$
- The oscillator which moves in a resistive medium under resorting force is
 - Simple Harmonic (b) Damped oscillator (a)
- (c) Un-damped oscillator

- (d) none of them
- The short wave produced in a medium when disturbance created for a short time is called
 - Wave pulse (b) wave train (a)
- (c) wave front
- (d) wave function

- A series of wave pulse is called
 - (b) Wave function (c) Wave train Wave motion
- (d) Wave

- (a) pulse
- The line or surface on which the disturbance has the same phase at all points
 - is called Wave pulse (b) Wave front (a)
- (c) Wave function (d) Wave train

• The waves in which the medium moves in direction of propagation of the wave is called
(a) Stationary Wave (b) Travelling Wave (c) Transverse W
• The wave form of periodic oscillations having fixed from
(d) Mechanical Worse (b) Sine Wave (c) Alternative
direction and combine together waves, they are travelling to
(c) Diffraction (d) P. (b) Destruction
(a) Nodes (b) Anti nodes (c) Standing waves The Doppler effect is also applicable to (a) Sound waves
(d) None of them (b) light waves (c) both a g
value ± 18 noge:11
(a) $\frac{\Delta \varphi}{2} = 0, \pi, 2\pi$ (b) $\Delta \varphi = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ (c) $\frac{\Delta \varphi}{\pi} = 2$ The distance between node and next antinode is
The distance between node and next antinode is equal to The λ (b) $\lambda/2$ (c) $\lambda/4$ (d) 2 λ
The product of frequency and $(c) \lambda/4$ $(d) 2 \lambda$
(a) Velocity of wave (b) Phase velocity (c) Time period (d) Transverse velocity

(d) Transverse velocity

UNVERSITY OF EDUCATION "UExam" Semester-II, 2019 BS Physics, Session:2018-2022

Course Code: PHYS1115 Subject: Waves and Oscillations

Time Allowed: 100 Minutes

Max. Marks:

42

Section II (Short Answer)

Q.2- Write short answers of the following.

3x6 = 18

- ì. Define Restoring Force.
- ii. Differentiate between Longitudinal and Transverse waves.
- Derive an expression for Standing waves. iii.
- Define Beats. iv.
- What do you know about Doppler Effect? V.
- vi. Define Phase velocity.

Section III (Essay Type)

Answer the following Questions

6x4 = 24

- Q.3. Derive an equation of Motion of Simple Pendulum.
- Q.4. What is Wave motion? Discuss should